skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meng, Haihong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inspired by the advantages of bi-atom catalysts and recent exciting progresses of nanozymes, by means of density functional theory (DFT) computations, we explored the potential of metal dimers embedded in phthalocyanine monolayers (M2-Pc), which mimics the binuclear centers of methane monooxygenase, as catalysts for methane conversion using H2O2 as an oxidant. In total, 26 transition metal (from group IB to VIIIB) and four main group metal (M = Al, Ga, Sn and Bi) dimers were considered, and two methane conversion routes, namely *O-assisted and *OH-assisted mechanisms were systematically studied. The results show that methane conversion proceeds via an *OH-assisted mechanism on the Ti2-Pc, Zr2-Pc and Ta2-Pc, a combination of *O- and *OH-assisted mechanism on the surface of Sc2-Pc, respectively. Our theoretical work may provide impetus to developing new catalysts for methane conversion and help stimulate further studies on metal dimer catalysts for other catalytic reactions. 
    more » « less